World Draughts Forum

It is currently Sat Aug 18, 2018 11:14

All times are UTC+02:00




Post new topic  Reply to topic  [ 15 posts ] 
Author Message
 Post subject: Polyproblemen
PostPosted: Thu Mar 26, 2009 13:16 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
My new polyprobleem - naar 50 jaar van Vadim Bulat (25.03.1959)

Image

21!(27À),33!+
À(15),22!,12,24,16+


Top
   
 Post subject:
PostPosted: Wed Nov 04, 2009 09:13 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
New

Image

37(24À),46!(41),8!(28Â),10,26(28 ),37,37+
À(32),19-30!,10,24,46+
Â(36),41,24,24+


Top
   
 Post subject: Re:
PostPosted: Sun Nov 08, 2009 21:17 
Offline
User avatar

Joined: Sat Oct 25, 2003 01:21
Posts: 723
gluk wrote:
New

Image

37(24À),46!(41),8!(28Â),10,26(28 ),37,37+
À(32),19-30!,10,24,46+
Â(36),41,24,24+


Chapeau!

_________________
... And I'll bury my soul in a scrapbook...
Leonard Cohen


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Sat Nov 14, 2009 16:15 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Image

11! enz.


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Thu Nov 19, 2009 08:44 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
09.07.09
Image


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Thu Nov 19, 2009 11:28 
Offline
User avatar

Joined: Mon Sep 29, 2003 11:23
Posts: 976
Location: Rijnsburg
Kunnen jullie mij uitleggen wat een polyprobleem is?


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Thu Nov 19, 2009 13:40 
Offline
User avatar

Joined: Tue Aug 22, 2006 15:38
Posts: 1421
Real name: Joost de Heer
polyprobleem = notedop?

_________________
Lasst die Maschinen verhungern, Ihr Narren...
Lasst sie verrecken!
Schlagt sie tot -- die Maschinen!


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Thu Nov 19, 2009 18:03 
Offline
User avatar

Joined: Sat Oct 25, 2003 01:21
Posts: 723
ildjarn wrote:
polyprobleem = notedop?


Volgens mij een probleem met meerdere varianten, die allemaal 100 procent zuiver zijn (SR). Verrekte moeilijk om te maken!

_________________
... And I'll bury my soul in a scrapbook...
Leonard Cohen


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Thu Nov 19, 2009 21:46 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Polyprobleem (polyminiaturen) is de composities met tweede en meer combinerig Varianten (blijkens RI –Rules International). Aan aanvankelijk opstelling misschien dammen (wit en zwart).

Nog my polyminiaturen (wit begin en wint):
05.04.2005
Image

19.01.2006
Image

Image

20.01.2006
Image

14.03.2006
Image

15.03.2006
Image

01.11.2008
Image

06.02.2009
Image

16.02.2009
Image

19.08.2009
Image


Last edited by gluk on Thu Nov 19, 2009 22:05, edited 1 time in total.

Top
   
 Post subject: Re: Polyproblemen
PostPosted: Tue Dec 15, 2009 19:34 
Offline
User avatar

Joined: Tue Aug 22, 2006 15:38
Posts: 1421
Real name: Joost de Heer
Image
Two solutions. The endgame of one solution isn't 100% exact though, there's a small choice.

_________________
Lasst die Maschinen verhungern, Ihr Narren...

Lasst sie verrecken!

Schlagt sie tot -- die Maschinen!


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Wed Dec 16, 2009 21:12 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Quote:
Image
Two solutions. The endgame of one solution isn't 100% exact though, there's a small choice.


This is not polyminiature!

Image

This is polyminiature!


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Mon Jan 04, 2010 11:22 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Nieuw polyprobleem

Image


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Tue Jan 05, 2010 11:56 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Nog nieuw polymini

Image


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Mon Oct 04, 2010 11:57 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
27.01.2010
Image

40(16А)4,238,49(38В),47+
А(44),4,238,49,27(22),27(40С),22,50+
В(43),18,49+
С(39),49+

31.01.2010 in honour of Y.Chertok and A.Andreev
Image

27,17(21A)42,20,47+
A(32)28,41,13,5+

01.02.2010
Image

17!,49х7х16(11A),38!!(46B),4-15(28-32)42,27,37,47+
A(6),11(22),18,18-13,2(32),24(37),47+
B(47),21!,4-15(33),38+

21.09.2010 in honour of M.Lepsic
Image

28.09.2010 in honour of M.Lepsic
Image

50(33A)31(36B)15(371)31,36+
A(38)33(44a)25(36C)41,48+
B(38)31-18(42/43D)41,4,48/49+
C(48)15,33/38/47(37)42,50-39+
D(41)46(43)4+
a(29)10-4,37+

29.09.2010
Image

37!(19A)24(42)47(31B)15!(47)36+
A(42)31!(19C)47(27)36+
B(13)4+
C(27)9,48+

30.09.2010
Image

02.10.2010
Image


Top
   
 Post subject: Re: Polyproblemen
PostPosted: Tue Oct 12, 2010 09:15 
Offline

Joined: Sat Nov 25, 2006 19:21
Posts: 35
Image


Top
   
Display posts from previous:  Sort by  
Post new topic  Reply to topic  [ 15 posts ] 

All times are UTC+02:00


Who is online

Users browsing this forum: No registered users and 2 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB® Forum Software © phpBB Limited